Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

From extended defects and interfaces to point defects in three dimensions-The case of InxGa1-xN

Identifieur interne : 000252 ( Russie/Analysis ); précédent : 000251; suivant : 000253

From extended defects and interfaces to point defects in three dimensions-The case of InxGa1-xN

Auteurs : RBID : Pascal:08-0050398

Descripteurs français

English descriptors

Abstract

The InxGa1-xN alloy system is used as an example to describe achievements and limitations that are given by noise levels in lattice images from transmission electron microscopes. Unlike many other experimental techniques, noise limits must be determined afresh from image to image since they vary with microscope performance, sample preparation, radiation damage if present, and operator skills. Both, the determination of the indium distribution in InxGa1-xN alloys by strain mapping and the detection of indium clusters in InN by imaging, are largely affected by noise limitations. As a result, it is challenging to probe for the distribution of indium atoms in alloys with x < 0.2 or x > 0.8, which is of importance if one aims at understanding the nucleation of indium atom clusters in GaN or InN. We present results that point towards cluster formation in quantum wells with x<0.2 and show that photoluminescence at 0.5-0.7 eV relate to the presence of indium clusters in InN. A reliable detection of single indium atoms, however, will require further improvement of detection limits, which one can expect from the next generation of electron microscopes that are developed in DoE's TEAM Project.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0050398

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">From extended defects and interfaces to point defects in three dimensions-The case of In
<sub>x</sub>
Ga
<sub>1-x</sub>
N</title>
<author>
<name sortKey="Kisielowski, C" uniqKey="Kisielowski C">C. Kisielowski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Berkeley, CA 94720</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bartel, T P" uniqKey="Bartel T">T. P. Bartel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Berkeley, CA 94720</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Specht, P" uniqKey="Specht P">P. Specht</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, University of California</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Berkeley, CA 94720</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, F R" uniqKey="Chen F">F.-R. Chen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Engineering and System Science, National Tsing Hua University</s1>
<s2>Hsin-Chu</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>Hsin-Chu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shubina, T V" uniqKey="Shubina T">T. V. Shubina</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Ioffe Physico-Technical Institute, Russian Academy of Sciences, Politechnicheskaya 26</s1>
<s2>St. Petersburg 194021</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St. Petersburg 194021</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">08-0050398</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 08-0050398 INIST</idno>
<idno type="RBID">Pascal:08-0050398</idno>
<idno type="wicri:Area/Main/Corpus">006F76</idno>
<idno type="wicri:Area/Main/Repository">007944</idno>
<idno type="wicri:Area/Russie/Extraction">000252</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0921-4526</idno>
<title level="j" type="abbreviated">Physica, B Condens. matter</title>
<title level="j" type="main">Physica. B, Condensed matter</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic clusters</term>
<term>Charge carrier generation</term>
<term>Chemical composition</term>
<term>Extended defects</term>
<term>Gallium nitride</term>
<term>Indium nitride</term>
<term>Interface defect</term>
<term>Photoluminescence</term>
<term>Point defects</term>
<term>Precipitates</term>
<term>Quantum wells</term>
<term>Radiation effects</term>
<term>Transmission electron microscopy</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Défaut étendu</term>
<term>Défaut interface</term>
<term>Défaut ponctuel</term>
<term>Composition chimique</term>
<term>Microscopie électronique transmission</term>
<term>Effet rayonnement</term>
<term>Photoluminescence</term>
<term>Génération porteur charge</term>
<term>Précipité</term>
<term>Nitrure d'indium</term>
<term>Agrégat atomique</term>
<term>Nitrure de gallium</term>
<term>Puits quantique</term>
<term>InxGa1-xN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloy system is used as an example to describe achievements and limitations that are given by noise levels in lattice images from transmission electron microscopes. Unlike many other experimental techniques, noise limits must be determined afresh from image to image since they vary with microscope performance, sample preparation, radiation damage if present, and operator skills. Both, the determination of the indium distribution in In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloys by strain mapping and the detection of indium clusters in InN by imaging, are largely affected by noise limitations. As a result, it is challenging to probe for the distribution of indium atoms in alloys with x < 0.2 or x > 0.8, which is of importance if one aims at understanding the nucleation of indium atom clusters in GaN or InN. We present results that point towards cluster formation in quantum wells with x<0.2 and show that photoluminescence at 0.5-0.7 eV relate to the presence of indium clusters in InN. A reliable detection of single indium atoms, however, will require further improvement of detection limits, which one can expect from the next generation of electron microscopes that are developed in DoE's TEAM Project.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0921-4526</s0>
</fA01>
<fA03 i2="1">
<s0>Physica, B Condens. matter</s0>
</fA03>
<fA05>
<s2>401-02</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>From extended defects and interfaces to point defects in three dimensions-The case of In
<sub>x</sub>
Ga
<sub>1-x</sub>
N</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the 24th International Conference on Defects in Semiconductors ICDS-24, Held in Albuquerque, NM, USA, 22-27 July 2007</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KISIELOWSKI (C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BARTEL (T. P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SPECHT (P.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHEN (F.-R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SHUBINA (T. V.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ESTREICHER (Stefan K.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>HOLTZ (Mark W.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>SEAGER (Carleton H.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>WRIGHT (Alan F.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Science and Engineering, University of California</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Engineering and System Science, National Tsing Hua University</s1>
<s2>Hsin-Chu</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Ioffe Physico-Technical Institute, Russian Academy of Sciences, Politechnicheskaya 26</s1>
<s2>St. Petersburg 194021</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Physics Department, Texas Tech University, Mail Stop 1051</s1>
<s2>Lubbock, TX 79409</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Sandia National Laboratories</s1>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA15>
<fA20>
<s1>639-645</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145B</s2>
<s5>354000174277591510</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>40 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0050398</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. B, Condensed matter</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloy system is used as an example to describe achievements and limitations that are given by noise levels in lattice images from transmission electron microscopes. Unlike many other experimental techniques, noise limits must be determined afresh from image to image since they vary with microscope performance, sample preparation, radiation damage if present, and operator skills. Both, the determination of the indium distribution in In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloys by strain mapping and the detection of indium clusters in InN by imaging, are largely affected by noise limitations. As a result, it is challenging to probe for the distribution of indium atoms in alloys with x < 0.2 or x > 0.8, which is of importance if one aims at understanding the nucleation of indium atom clusters in GaN or InN. We present results that point towards cluster formation in quantum wells with x<0.2 and show that photoluminescence at 0.5-0.7 eV relate to the presence of indium clusters in InN. A reliable detection of single indium atoms, however, will require further improvement of detection limits, which one can expect from the next generation of electron microscopes that are developed in DoE's TEAM Project.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Défaut étendu</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Extended defects</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Défaut interface</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Interface defect</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Défaut ponctuel</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Point defects</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Composition chimique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Chemical composition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Effet rayonnement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Radiation effects</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Génération porteur charge</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Charge carrier generation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Generación portador carga</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Précipité</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Precipitates</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Agrégat atomique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Atomic clusters</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>InxGa1-xN</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>028</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>ICDS-24 International Conference on Defects in Semiconductors</s1>
<s2>24</s2>
<s3>Albuquerque, NM USA</s3>
<s4>2007-07-22</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000252 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000252 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:08-0050398
   |texte=   From extended defects and interfaces to point defects in three dimensions-The case of InxGa1-xN
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024